1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
// Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// SPDX-License-Identifier: BSL-1.0
#include <catch2/catch_test_macros.hpp>
#include <catch2/internal/catch_random_integer_helpers.hpp>
#include <random>
namespace {
template <typename Int>
static void
CommutativeMultCheck( Int a, Int b, Int upper_result, Int lower_result ) {
using Catch::Detail::extendedMult;
using Catch::Detail::ExtendedMultResult;
CHECK( extendedMult( a, b ) ==
ExtendedMultResult<Int>{ upper_result, lower_result } );
CHECK( extendedMult( b, a ) ==
ExtendedMultResult<Int>{ upper_result, lower_result } );
}
// Simple (and slow) implmentation of extended multiplication for tests
constexpr Catch::Detail::ExtendedMultResult<std::uint64_t>
extendedMultNaive( std::uint64_t lhs, std::uint64_t rhs ) {
// This is a simple long multiplication, where we split lhs and rhs
// into two 32-bit "digits", so that we can do ops with carry in 64-bits.
//
// 32b 32b 32b 32b
// lhs L1 L2
// * rhs R1 R2
// ------------------------
// | R2 * L2 |
// | R2 * L1 |
// | R1 * L2 |
// | R1 * L1 |
// -------------------------
// | a | b | c | d |
#define CarryBits( x ) ( x >> 32 )
#define Digits( x ) ( x & 0xFF'FF'FF'FF )
auto r2l2 = Digits( rhs ) * Digits( lhs );
auto r2l1 = Digits( rhs ) * CarryBits( lhs );
auto r1l2 = CarryBits( rhs ) * Digits( lhs );
auto r1l1 = CarryBits( rhs ) * CarryBits( lhs );
// Sum to columns first
auto d = Digits( r2l2 );
auto c = CarryBits( r2l2 ) + Digits( r2l1 ) + Digits( r1l2 );
auto b = CarryBits( r2l1 ) + CarryBits( r1l2 ) + Digits( r1l1 );
auto a = CarryBits( r1l1 );
// Propagate carries between columns
c += CarryBits( d );
b += CarryBits( c );
a += CarryBits( b );
// Remove the used carries
c = Digits( c );
b = Digits( b );
a = Digits( a );
#undef CarryBits
#undef Digits
return {
a << 32 | b, // upper 64 bits
c << 32 | d // lower 64 bits
};
}
} // namespace
TEST_CASE( "extendedMult 64x64", "[Integer][approvals]" ) {
// a x 0 == 0
CommutativeMultCheck<uint64_t>( 0x1234'5678'9ABC'DEFF, 0, 0, 0 );
// bit carried from low half to upper half
CommutativeMultCheck<uint64_t>( uint64_t( 1 ) << 63, 2, 1, 0 );
// bits in upper half on one side, bits in lower half on other side
CommutativeMultCheck<uint64_t>( 0xcdcd'dcdc'0000'0000,
0x0000'0000'aeae'aeae,
0x0000'0000'8c6e'5a77,
0x7391'a588'0000'0000 );
// Some input numbers without interesting patterns
CommutativeMultCheck<uint64_t>( 0xaaaa'aaaa'aaaa'aaaa,
0xbbbb'bbbb'bbbb'bbbb,
0x7d27'd27d'27d2'7d26,
0xd82d'82d8'2d82'd82e );
CommutativeMultCheck<uint64_t>( 0x7d27'd27d'27d2'7d26,
0xd82d'82d8'2d82'd82e,
0x69af'd991'8256'b953,
0x8724'8909'fcb6'8cd4 );
CommutativeMultCheck<uint64_t>( 0xdead'beef'dead'beef,
0xfeed'feed'feed'feef,
0xddbf'680b'2b0c'b558,
0x7a36'b06f'2ce9'6321 );
CommutativeMultCheck<uint64_t>( 0xddbf'680b'2b0c'b558,
0x7a36'b06f'2ce9'6321,
0x69dc'96c9'294b'fc7f,
0xd038'39fa'a3dc'6858 );
CommutativeMultCheck<uint64_t>( 0x61c8'8646'80b5'83eb,
0x61c8'8646'80b5'83eb,
0x2559'92d3'8220'8bbe,
0xdf44'2d22'ce48'59b9 );
}
TEST_CASE("extendedMult 64x64 - all implementations", "[integer][approvals]") {
using Catch::Detail::extendedMult;
using Catch::Detail::extendedMultPortable;
using Catch::Detail::fillBitsFrom;
std::random_device rng;
for (size_t i = 0; i < 100; ++i) {
auto a = fillBitsFrom<std::uint64_t>( rng );
auto b = fillBitsFrom<std::uint64_t>( rng );
CAPTURE( a, b );
auto naive_ab = extendedMultNaive( a, b );
REQUIRE( naive_ab == extendedMultNaive( b, a ) );
REQUIRE( naive_ab == extendedMultPortable( a, b ) );
REQUIRE( naive_ab == extendedMultPortable( b, a ) );
REQUIRE( naive_ab == extendedMult( a, b ) );
REQUIRE( naive_ab == extendedMult( b, a ) );
}
}
TEST_CASE( "SizedUnsignedType helpers", "[integer][approvals]" ) {
using Catch::Detail::SizedUnsignedType_t;
using Catch::Detail::DoubleWidthUnsignedType_t;
STATIC_REQUIRE( sizeof( SizedUnsignedType_t<1> ) == 1 );
STATIC_REQUIRE( sizeof( SizedUnsignedType_t<2> ) == 2 );
STATIC_REQUIRE( sizeof( SizedUnsignedType_t<4> ) == 4 );
STATIC_REQUIRE( sizeof( SizedUnsignedType_t<8> ) == 8 );
STATIC_REQUIRE( sizeof( DoubleWidthUnsignedType_t<std::uint8_t> ) == 2 );
STATIC_REQUIRE( std::is_unsigned<DoubleWidthUnsignedType_t<std::uint8_t>>::value );
STATIC_REQUIRE( sizeof( DoubleWidthUnsignedType_t<std::uint16_t> ) == 4 );
STATIC_REQUIRE( std::is_unsigned<DoubleWidthUnsignedType_t<std::uint16_t>>::value );
STATIC_REQUIRE( sizeof( DoubleWidthUnsignedType_t<std::uint32_t> ) == 8 );
STATIC_REQUIRE( std::is_unsigned<DoubleWidthUnsignedType_t<std::uint32_t>>::value );
}
TEST_CASE( "extendedMult 32x32", "[integer][approvals]" ) {
// a x 0 == 0
CommutativeMultCheck<uint32_t>( 0x1234'5678, 0, 0, 0 );
// bit carried from low half to upper half
CommutativeMultCheck<uint32_t>( uint32_t(1) << 31, 2, 1, 0 );
// bits in upper half on one side, bits in lower half on other side
CommutativeMultCheck<uint32_t>( 0xdcdc'0000, 0x0000'aabb, 0x0000'934b, 0x6cb4'0000 );
// Some input numbers without interesting patterns
CommutativeMultCheck<uint32_t>(
0xaaaa'aaaa, 0xbbbb'bbbb, 0x7d27'd27c, 0x2d82'd82e );
CommutativeMultCheck<uint32_t>(
0x7d27'd27c, 0x2d82'd82e, 0x163f'f7e8, 0xc5b8'7248 );
CommutativeMultCheck<uint32_t>(
0xdead'beef, 0xfeed'feed, 0xddbf'6809, 0x6f8d'e543 );
CommutativeMultCheck<uint32_t>(
0xddbf'6809, 0x6f8d'e543, 0x60a0'e71e, 0x751d'475b );
}
TEST_CASE( "extendedMult 8x8", "[integer][approvals]" ) {
// a x 0 == 0
CommutativeMultCheck<uint8_t>( 0xcd, 0, 0, 0 );
// bit carried from low half to upper half
CommutativeMultCheck<uint8_t>( uint8_t( 1 ) << 7, 2, 1, 0 );
// bits in upper half on one side, bits in lower half on other side
CommutativeMultCheck<uint8_t>( 0x80, 0x03, 0x01, 0x80 );
// Some input numbers without interesting patterns
CommutativeMultCheck<uint8_t>( 0xaa, 0xbb, 0x7c, 0x2e );
CommutativeMultCheck<uint8_t>( 0x7c, 0x2e, 0x16, 0x48 );
CommutativeMultCheck<uint8_t>( 0xdc, 0xcd, 0xb0, 0x2c );
CommutativeMultCheck<uint8_t>( 0xb0, 0x2c, 0x1e, 0x40 );
}
TEST_CASE( "negative and positive signed integers keep their order after transposeToNaturalOrder",
"[integer][approvals]") {
using Catch::Detail::transposeToNaturalOrder;
int32_t negative( -1 );
int32_t positive( 1 );
uint32_t adjusted_negative =
transposeToNaturalOrder<int32_t>( static_cast<uint32_t>( negative ) );
uint32_t adjusted_positive =
transposeToNaturalOrder<int32_t>( static_cast<uint32_t>( positive ) );
REQUIRE( adjusted_negative < adjusted_positive );
REQUIRE( adjusted_positive - adjusted_negative == 2 );
// Conversion has to be reversible
REQUIRE( negative == static_cast<int32_t>( transposeToNaturalOrder<int32_t>(
adjusted_negative ) ) );
REQUIRE( positive == static_cast<int32_t>( transposeToNaturalOrder<int32_t>(
adjusted_positive ) ) );
}
TEST_CASE( "unsigned integers are unchanged by transposeToNaturalOrder",
"[integer][approvals]") {
using Catch::Detail::transposeToNaturalOrder;
uint32_t max = std::numeric_limits<uint32_t>::max();
uint32_t zero = 0;
REQUIRE( max == transposeToNaturalOrder<uint32_t>( max ) );
REQUIRE( zero == transposeToNaturalOrder<uint32_t>( zero ) );
}
|