aboutsummaryrefslogtreecommitdiffstats
path: root/src/catch2/benchmark/detail/catch_stats.cpp
diff options
context:
space:
mode:
authorLexi Winter <lexi@le-fay.org>2025-06-29 19:25:29 +0100
committerLexi Winter <lexi@le-fay.org>2025-06-29 19:25:29 +0100
commitbc524d70253a4ab2fe40c3ca3e5666e267c0a4d1 (patch)
tree1e629e7b46b1d9972a973bc93fd100bcebd395be /src/catch2/benchmark/detail/catch_stats.cpp
downloadnihil-bc524d70253a4ab2fe40c3ca3e5666e267c0a4d1.tar.gz
nihil-bc524d70253a4ab2fe40c3ca3e5666e267c0a4d1.tar.bz2
Diffstat (limited to 'src/catch2/benchmark/detail/catch_stats.cpp')
-rw-r--r--src/catch2/benchmark/detail/catch_stats.cpp393
1 files changed, 393 insertions, 0 deletions
diff --git a/src/catch2/benchmark/detail/catch_stats.cpp b/src/catch2/benchmark/detail/catch_stats.cpp
new file mode 100644
index 0000000..2a5a2e0
--- /dev/null
+++ b/src/catch2/benchmark/detail/catch_stats.cpp
@@ -0,0 +1,393 @@
+
+// Copyright Catch2 Authors
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE.txt or copy at
+// https://www.boost.org/LICENSE_1_0.txt)
+
+// SPDX-License-Identifier: BSL-1.0
+// Adapted from donated nonius code.
+
+#include <catch2/benchmark/detail/catch_stats.hpp>
+
+#include <catch2/internal/catch_compiler_capabilities.hpp>
+#include <catch2/internal/catch_floating_point_helpers.hpp>
+#include <catch2/internal/catch_random_number_generator.hpp>
+#include <catch2/internal/catch_uniform_integer_distribution.hpp>
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstddef>
+#include <numeric>
+#include <random>
+
+
+#if defined(CATCH_CONFIG_USE_ASYNC)
+#include <future>
+#endif
+
+namespace Catch {
+ namespace Benchmark {
+ namespace Detail {
+ namespace {
+
+ template <typename URng, typename Estimator>
+ static sample
+ resample( URng& rng,
+ unsigned int resamples,
+ double const* first,
+ double const* last,
+ Estimator& estimator ) {
+ auto n = static_cast<size_t>( last - first );
+ Catch::uniform_integer_distribution<size_t> dist( 0, n - 1 );
+
+ sample out;
+ out.reserve( resamples );
+ std::vector<double> resampled;
+ resampled.reserve( n );
+ for ( size_t i = 0; i < resamples; ++i ) {
+ resampled.clear();
+ for ( size_t s = 0; s < n; ++s ) {
+ resampled.push_back( first[dist( rng )] );
+ }
+ const auto estimate =
+ estimator( resampled.data(), resampled.data() + resampled.size() );
+ out.push_back( estimate );
+ }
+ std::sort( out.begin(), out.end() );
+ return out;
+ }
+
+ static double outlier_variance( Estimate<double> mean,
+ Estimate<double> stddev,
+ int n ) {
+ double sb = stddev.point;
+ double mn = mean.point / n;
+ double mg_min = mn / 2.;
+ double sg = (std::min)( mg_min / 4., sb / std::sqrt( n ) );
+ double sg2 = sg * sg;
+ double sb2 = sb * sb;
+
+ auto c_max = [n, mn, sb2, sg2]( double x ) -> double {
+ double k = mn - x;
+ double d = k * k;
+ double nd = n * d;
+ double k0 = -n * nd;
+ double k1 = sb2 - n * sg2 + nd;
+ double det = k1 * k1 - 4 * sg2 * k0;
+ return static_cast<int>( -2. * k0 /
+ ( k1 + std::sqrt( det ) ) );
+ };
+
+ auto var_out = [n, sb2, sg2]( double c ) {
+ double nc = n - c;
+ return ( nc / n ) * ( sb2 - nc * sg2 );
+ };
+
+ return (std::min)( var_out( 1 ),
+ var_out(
+ (std::min)( c_max( 0. ),
+ c_max( mg_min ) ) ) ) /
+ sb2;
+ }
+
+ static double erf_inv( double x ) {
+ // Code accompanying the article "Approximating the erfinv
+ // function" in GPU Computing Gems, Volume 2
+ double w, p;
+
+ w = -log( ( 1.0 - x ) * ( 1.0 + x ) );
+
+ if ( w < 6.250000 ) {
+ w = w - 3.125000;
+ p = -3.6444120640178196996e-21;
+ p = -1.685059138182016589e-19 + p * w;
+ p = 1.2858480715256400167e-18 + p * w;
+ p = 1.115787767802518096e-17 + p * w;
+ p = -1.333171662854620906e-16 + p * w;
+ p = 2.0972767875968561637e-17 + p * w;
+ p = 6.6376381343583238325e-15 + p * w;
+ p = -4.0545662729752068639e-14 + p * w;
+ p = -8.1519341976054721522e-14 + p * w;
+ p = 2.6335093153082322977e-12 + p * w;
+ p = -1.2975133253453532498e-11 + p * w;
+ p = -5.4154120542946279317e-11 + p * w;
+ p = 1.051212273321532285e-09 + p * w;
+ p = -4.1126339803469836976e-09 + p * w;
+ p = -2.9070369957882005086e-08 + p * w;
+ p = 4.2347877827932403518e-07 + p * w;
+ p = -1.3654692000834678645e-06 + p * w;
+ p = -1.3882523362786468719e-05 + p * w;
+ p = 0.0001867342080340571352 + p * w;
+ p = -0.00074070253416626697512 + p * w;
+ p = -0.0060336708714301490533 + p * w;
+ p = 0.24015818242558961693 + p * w;
+ p = 1.6536545626831027356 + p * w;
+ } else if ( w < 16.000000 ) {
+ w = sqrt( w ) - 3.250000;
+ p = 2.2137376921775787049e-09;
+ p = 9.0756561938885390979e-08 + p * w;
+ p = -2.7517406297064545428e-07 + p * w;
+ p = 1.8239629214389227755e-08 + p * w;
+ p = 1.5027403968909827627e-06 + p * w;
+ p = -4.013867526981545969e-06 + p * w;
+ p = 2.9234449089955446044e-06 + p * w;
+ p = 1.2475304481671778723e-05 + p * w;
+ p = -4.7318229009055733981e-05 + p * w;
+ p = 6.8284851459573175448e-05 + p * w;
+ p = 2.4031110387097893999e-05 + p * w;
+ p = -0.0003550375203628474796 + p * w;
+ p = 0.00095328937973738049703 + p * w;
+ p = -0.0016882755560235047313 + p * w;
+ p = 0.0024914420961078508066 + p * w;
+ p = -0.0037512085075692412107 + p * w;
+ p = 0.005370914553590063617 + p * w;
+ p = 1.0052589676941592334 + p * w;
+ p = 3.0838856104922207635 + p * w;
+ } else {
+ w = sqrt( w ) - 5.000000;
+ p = -2.7109920616438573243e-11;
+ p = -2.5556418169965252055e-10 + p * w;
+ p = 1.5076572693500548083e-09 + p * w;
+ p = -3.7894654401267369937e-09 + p * w;
+ p = 7.6157012080783393804e-09 + p * w;
+ p = -1.4960026627149240478e-08 + p * w;
+ p = 2.9147953450901080826e-08 + p * w;
+ p = -6.7711997758452339498e-08 + p * w;
+ p = 2.2900482228026654717e-07 + p * w;
+ p = -9.9298272942317002539e-07 + p * w;
+ p = 4.5260625972231537039e-06 + p * w;
+ p = -1.9681778105531670567e-05 + p * w;
+ p = 7.5995277030017761139e-05 + p * w;
+ p = -0.00021503011930044477347 + p * w;
+ p = -0.00013871931833623122026 + p * w;
+ p = 1.0103004648645343977 + p * w;
+ p = 4.8499064014085844221 + p * w;
+ }
+ return p * x;
+ }
+
+ static double
+ standard_deviation( double const* first, double const* last ) {
+ auto m = Catch::Benchmark::Detail::mean( first, last );
+ double variance =
+ std::accumulate( first,
+ last,
+ 0.,
+ [m]( double a, double b ) {
+ double diff = b - m;
+ return a + diff * diff;
+ } ) /
+ static_cast<double>( last - first );
+ return std::sqrt( variance );
+ }
+
+ static sample jackknife( double ( *estimator )( double const*,
+ double const* ),
+ double* first,
+ double* last ) {
+ const auto second = first + 1;
+ sample results;
+ results.reserve( static_cast<size_t>( last - first ) );
+
+ for ( auto it = first; it != last; ++it ) {
+ std::iter_swap( it, first );
+ results.push_back( estimator( second, last ) );
+ }
+
+ return results;
+ }
+
+
+ } // namespace
+ } // namespace Detail
+ } // namespace Benchmark
+} // namespace Catch
+
+namespace Catch {
+ namespace Benchmark {
+ namespace Detail {
+
+ double weighted_average_quantile( int k,
+ int q,
+ double* first,
+ double* last ) {
+ auto count = last - first;
+ double idx = static_cast<double>((count - 1) * k) / static_cast<double>(q);
+ int j = static_cast<int>(idx);
+ double g = idx - j;
+ std::nth_element(first, first + j, last);
+ auto xj = first[j];
+ if ( Catch::Detail::directCompare( g, 0 ) ) {
+ return xj;
+ }
+
+ auto xj1 = *std::min_element(first + (j + 1), last);
+ return xj + g * (xj1 - xj);
+ }
+
+ OutlierClassification
+ classify_outliers( double const* first, double const* last ) {
+ std::vector<double> copy( first, last );
+
+ auto q1 = weighted_average_quantile( 1, 4, copy.data(), copy.data() + copy.size() );
+ auto q3 = weighted_average_quantile( 3, 4, copy.data(), copy.data() + copy.size() );
+ auto iqr = q3 - q1;
+ auto los = q1 - ( iqr * 3. );
+ auto lom = q1 - ( iqr * 1.5 );
+ auto him = q3 + ( iqr * 1.5 );
+ auto his = q3 + ( iqr * 3. );
+
+ OutlierClassification o;
+ for ( ; first != last; ++first ) {
+ const double t = *first;
+ if ( t < los ) {
+ ++o.low_severe;
+ } else if ( t < lom ) {
+ ++o.low_mild;
+ } else if ( t > his ) {
+ ++o.high_severe;
+ } else if ( t > him ) {
+ ++o.high_mild;
+ }
+ ++o.samples_seen;
+ }
+ return o;
+ }
+
+ double mean( double const* first, double const* last ) {
+ auto count = last - first;
+ double sum = 0.;
+ while (first != last) {
+ sum += *first;
+ ++first;
+ }
+ return sum / static_cast<double>(count);
+ }
+
+ double normal_cdf( double x ) {
+ return std::erfc( -x / std::sqrt( 2.0 ) ) / 2.0;
+ }
+
+ double erfc_inv(double x) {
+ return erf_inv(1.0 - x);
+ }
+
+ double normal_quantile(double p) {
+ static const double ROOT_TWO = std::sqrt(2.0);
+
+ double result = 0.0;
+ assert(p >= 0 && p <= 1);
+ if (p < 0 || p > 1) {
+ return result;
+ }
+
+ result = -erfc_inv(2.0 * p);
+ // result *= normal distribution standard deviation (1.0) * sqrt(2)
+ result *= /*sd * */ ROOT_TWO;
+ // result += normal disttribution mean (0)
+ return result;
+ }
+
+ Estimate<double>
+ bootstrap( double confidence_level,
+ double* first,
+ double* last,
+ sample const& resample,
+ double ( *estimator )( double const*, double const* ) ) {
+ auto n_samples = last - first;
+
+ double point = estimator( first, last );
+ // Degenerate case with a single sample
+ if ( n_samples == 1 )
+ return { point, point, point, confidence_level };
+
+ sample jack = jackknife( estimator, first, last );
+ double jack_mean =
+ mean( jack.data(), jack.data() + jack.size() );
+ double sum_squares = 0, sum_cubes = 0;
+ for ( double x : jack ) {
+ auto difference = jack_mean - x;
+ auto square = difference * difference;
+ auto cube = square * difference;
+ sum_squares += square;
+ sum_cubes += cube;
+ }
+
+ double accel = sum_cubes / ( 6 * std::pow( sum_squares, 1.5 ) );
+ long n = static_cast<long>( resample.size() );
+ double prob_n = static_cast<double>(
+ std::count_if( resample.begin(),
+ resample.end(),
+ [point]( double x ) { return x < point; } )) /
+ static_cast<double>( n );
+ // degenerate case with uniform samples
+ if ( Catch::Detail::directCompare( prob_n, 0. ) ) {
+ return { point, point, point, confidence_level };
+ }
+
+ double bias = normal_quantile( prob_n );
+ double z1 = normal_quantile( ( 1. - confidence_level ) / 2. );
+
+ auto cumn = [n]( double x ) -> long {
+ return std::lround( normal_cdf( x ) *
+ static_cast<double>( n ) );
+ };
+ auto a = [bias, accel]( double b ) {
+ return bias + b / ( 1. - accel * b );
+ };
+ double b1 = bias + z1;
+ double b2 = bias - z1;
+ double a1 = a( b1 );
+ double a2 = a( b2 );
+ auto lo = static_cast<size_t>( (std::max)( cumn( a1 ), 0l ) );
+ auto hi =
+ static_cast<size_t>( (std::min)( cumn( a2 ), n - 1 ) );
+
+ return { point, resample[lo], resample[hi], confidence_level };
+ }
+
+ bootstrap_analysis analyse_samples(double confidence_level,
+ unsigned int n_resamples,
+ double* first,
+ double* last) {
+ auto mean = &Detail::mean;
+ auto stddev = &standard_deviation;
+
+#if defined(CATCH_CONFIG_USE_ASYNC)
+ auto Estimate = [=](double(*f)(double const*, double const*)) {
+ std::random_device rd;
+ auto seed = rd();
+ return std::async(std::launch::async, [=] {
+ SimplePcg32 rng( seed );
+ auto resampled = resample(rng, n_resamples, first, last, f);
+ return bootstrap(confidence_level, first, last, resampled, f);
+ });
+ };
+
+ auto mean_future = Estimate(mean);
+ auto stddev_future = Estimate(stddev);
+
+ auto mean_estimate = mean_future.get();
+ auto stddev_estimate = stddev_future.get();
+#else
+ auto Estimate = [=](double(*f)(double const* , double const*)) {
+ std::random_device rd;
+ auto seed = rd();
+ SimplePcg32 rng( seed );
+ auto resampled = resample(rng, n_resamples, first, last, f);
+ return bootstrap(confidence_level, first, last, resampled, f);
+ };
+
+ auto mean_estimate = Estimate(mean);
+ auto stddev_estimate = Estimate(stddev);
+#endif // CATCH_USE_ASYNC
+
+ auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++
+ double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n);
+
+ return { mean_estimate, stddev_estimate, outlier_variance };
+ }
+ } // namespace Detail
+ } // namespace Benchmark
+} // namespace Catch