diff options
| author | Lexi Winter <lexi@le-fay.org> | 2025-06-29 19:25:29 +0100 |
|---|---|---|
| committer | Lexi Winter <lexi@le-fay.org> | 2025-06-29 19:25:29 +0100 |
| commit | bc524d70253a4ab2fe40c3ca3e5666e267c0a4d1 (patch) | |
| tree | 1e629e7b46b1d9972a973bc93fd100bcebd395be /src/catch2/benchmark/detail/catch_stats.cpp | |
| download | nihil-bc524d70253a4ab2fe40c3ca3e5666e267c0a4d1.tar.gz nihil-bc524d70253a4ab2fe40c3ca3e5666e267c0a4d1.tar.bz2 | |
import catch2 3.8.1vendor/catch2/3.8.1vendor/catch2
Diffstat (limited to 'src/catch2/benchmark/detail/catch_stats.cpp')
| -rw-r--r-- | src/catch2/benchmark/detail/catch_stats.cpp | 393 |
1 files changed, 393 insertions, 0 deletions
diff --git a/src/catch2/benchmark/detail/catch_stats.cpp b/src/catch2/benchmark/detail/catch_stats.cpp new file mode 100644 index 0000000..2a5a2e0 --- /dev/null +++ b/src/catch2/benchmark/detail/catch_stats.cpp @@ -0,0 +1,393 @@ + +// Copyright Catch2 Authors +// Distributed under the Boost Software License, Version 1.0. +// (See accompanying file LICENSE.txt or copy at +// https://www.boost.org/LICENSE_1_0.txt) + +// SPDX-License-Identifier: BSL-1.0 +// Adapted from donated nonius code. + +#include <catch2/benchmark/detail/catch_stats.hpp> + +#include <catch2/internal/catch_compiler_capabilities.hpp> +#include <catch2/internal/catch_floating_point_helpers.hpp> +#include <catch2/internal/catch_random_number_generator.hpp> +#include <catch2/internal/catch_uniform_integer_distribution.hpp> + +#include <algorithm> +#include <cassert> +#include <cmath> +#include <cstddef> +#include <numeric> +#include <random> + + +#if defined(CATCH_CONFIG_USE_ASYNC) +#include <future> +#endif + +namespace Catch { + namespace Benchmark { + namespace Detail { + namespace { + + template <typename URng, typename Estimator> + static sample + resample( URng& rng, + unsigned int resamples, + double const* first, + double const* last, + Estimator& estimator ) { + auto n = static_cast<size_t>( last - first ); + Catch::uniform_integer_distribution<size_t> dist( 0, n - 1 ); + + sample out; + out.reserve( resamples ); + std::vector<double> resampled; + resampled.reserve( n ); + for ( size_t i = 0; i < resamples; ++i ) { + resampled.clear(); + for ( size_t s = 0; s < n; ++s ) { + resampled.push_back( first[dist( rng )] ); + } + const auto estimate = + estimator( resampled.data(), resampled.data() + resampled.size() ); + out.push_back( estimate ); + } + std::sort( out.begin(), out.end() ); + return out; + } + + static double outlier_variance( Estimate<double> mean, + Estimate<double> stddev, + int n ) { + double sb = stddev.point; + double mn = mean.point / n; + double mg_min = mn / 2.; + double sg = (std::min)( mg_min / 4., sb / std::sqrt( n ) ); + double sg2 = sg * sg; + double sb2 = sb * sb; + + auto c_max = [n, mn, sb2, sg2]( double x ) -> double { + double k = mn - x; + double d = k * k; + double nd = n * d; + double k0 = -n * nd; + double k1 = sb2 - n * sg2 + nd; + double det = k1 * k1 - 4 * sg2 * k0; + return static_cast<int>( -2. * k0 / + ( k1 + std::sqrt( det ) ) ); + }; + + auto var_out = [n, sb2, sg2]( double c ) { + double nc = n - c; + return ( nc / n ) * ( sb2 - nc * sg2 ); + }; + + return (std::min)( var_out( 1 ), + var_out( + (std::min)( c_max( 0. ), + c_max( mg_min ) ) ) ) / + sb2; + } + + static double erf_inv( double x ) { + // Code accompanying the article "Approximating the erfinv + // function" in GPU Computing Gems, Volume 2 + double w, p; + + w = -log( ( 1.0 - x ) * ( 1.0 + x ) ); + + if ( w < 6.250000 ) { + w = w - 3.125000; + p = -3.6444120640178196996e-21; + p = -1.685059138182016589e-19 + p * w; + p = 1.2858480715256400167e-18 + p * w; + p = 1.115787767802518096e-17 + p * w; + p = -1.333171662854620906e-16 + p * w; + p = 2.0972767875968561637e-17 + p * w; + p = 6.6376381343583238325e-15 + p * w; + p = -4.0545662729752068639e-14 + p * w; + p = -8.1519341976054721522e-14 + p * w; + p = 2.6335093153082322977e-12 + p * w; + p = -1.2975133253453532498e-11 + p * w; + p = -5.4154120542946279317e-11 + p * w; + p = 1.051212273321532285e-09 + p * w; + p = -4.1126339803469836976e-09 + p * w; + p = -2.9070369957882005086e-08 + p * w; + p = 4.2347877827932403518e-07 + p * w; + p = -1.3654692000834678645e-06 + p * w; + p = -1.3882523362786468719e-05 + p * w; + p = 0.0001867342080340571352 + p * w; + p = -0.00074070253416626697512 + p * w; + p = -0.0060336708714301490533 + p * w; + p = 0.24015818242558961693 + p * w; + p = 1.6536545626831027356 + p * w; + } else if ( w < 16.000000 ) { + w = sqrt( w ) - 3.250000; + p = 2.2137376921775787049e-09; + p = 9.0756561938885390979e-08 + p * w; + p = -2.7517406297064545428e-07 + p * w; + p = 1.8239629214389227755e-08 + p * w; + p = 1.5027403968909827627e-06 + p * w; + p = -4.013867526981545969e-06 + p * w; + p = 2.9234449089955446044e-06 + p * w; + p = 1.2475304481671778723e-05 + p * w; + p = -4.7318229009055733981e-05 + p * w; + p = 6.8284851459573175448e-05 + p * w; + p = 2.4031110387097893999e-05 + p * w; + p = -0.0003550375203628474796 + p * w; + p = 0.00095328937973738049703 + p * w; + p = -0.0016882755560235047313 + p * w; + p = 0.0024914420961078508066 + p * w; + p = -0.0037512085075692412107 + p * w; + p = 0.005370914553590063617 + p * w; + p = 1.0052589676941592334 + p * w; + p = 3.0838856104922207635 + p * w; + } else { + w = sqrt( w ) - 5.000000; + p = -2.7109920616438573243e-11; + p = -2.5556418169965252055e-10 + p * w; + p = 1.5076572693500548083e-09 + p * w; + p = -3.7894654401267369937e-09 + p * w; + p = 7.6157012080783393804e-09 + p * w; + p = -1.4960026627149240478e-08 + p * w; + p = 2.9147953450901080826e-08 + p * w; + p = -6.7711997758452339498e-08 + p * w; + p = 2.2900482228026654717e-07 + p * w; + p = -9.9298272942317002539e-07 + p * w; + p = 4.5260625972231537039e-06 + p * w; + p = -1.9681778105531670567e-05 + p * w; + p = 7.5995277030017761139e-05 + p * w; + p = -0.00021503011930044477347 + p * w; + p = -0.00013871931833623122026 + p * w; + p = 1.0103004648645343977 + p * w; + p = 4.8499064014085844221 + p * w; + } + return p * x; + } + + static double + standard_deviation( double const* first, double const* last ) { + auto m = Catch::Benchmark::Detail::mean( first, last ); + double variance = + std::accumulate( first, + last, + 0., + [m]( double a, double b ) { + double diff = b - m; + return a + diff * diff; + } ) / + static_cast<double>( last - first ); + return std::sqrt( variance ); + } + + static sample jackknife( double ( *estimator )( double const*, + double const* ), + double* first, + double* last ) { + const auto second = first + 1; + sample results; + results.reserve( static_cast<size_t>( last - first ) ); + + for ( auto it = first; it != last; ++it ) { + std::iter_swap( it, first ); + results.push_back( estimator( second, last ) ); + } + + return results; + } + + + } // namespace + } // namespace Detail + } // namespace Benchmark +} // namespace Catch + +namespace Catch { + namespace Benchmark { + namespace Detail { + + double weighted_average_quantile( int k, + int q, + double* first, + double* last ) { + auto count = last - first; + double idx = static_cast<double>((count - 1) * k) / static_cast<double>(q); + int j = static_cast<int>(idx); + double g = idx - j; + std::nth_element(first, first + j, last); + auto xj = first[j]; + if ( Catch::Detail::directCompare( g, 0 ) ) { + return xj; + } + + auto xj1 = *std::min_element(first + (j + 1), last); + return xj + g * (xj1 - xj); + } + + OutlierClassification + classify_outliers( double const* first, double const* last ) { + std::vector<double> copy( first, last ); + + auto q1 = weighted_average_quantile( 1, 4, copy.data(), copy.data() + copy.size() ); + auto q3 = weighted_average_quantile( 3, 4, copy.data(), copy.data() + copy.size() ); + auto iqr = q3 - q1; + auto los = q1 - ( iqr * 3. ); + auto lom = q1 - ( iqr * 1.5 ); + auto him = q3 + ( iqr * 1.5 ); + auto his = q3 + ( iqr * 3. ); + + OutlierClassification o; + for ( ; first != last; ++first ) { + const double t = *first; + if ( t < los ) { + ++o.low_severe; + } else if ( t < lom ) { + ++o.low_mild; + } else if ( t > his ) { + ++o.high_severe; + } else if ( t > him ) { + ++o.high_mild; + } + ++o.samples_seen; + } + return o; + } + + double mean( double const* first, double const* last ) { + auto count = last - first; + double sum = 0.; + while (first != last) { + sum += *first; + ++first; + } + return sum / static_cast<double>(count); + } + + double normal_cdf( double x ) { + return std::erfc( -x / std::sqrt( 2.0 ) ) / 2.0; + } + + double erfc_inv(double x) { + return erf_inv(1.0 - x); + } + + double normal_quantile(double p) { + static const double ROOT_TWO = std::sqrt(2.0); + + double result = 0.0; + assert(p >= 0 && p <= 1); + if (p < 0 || p > 1) { + return result; + } + + result = -erfc_inv(2.0 * p); + // result *= normal distribution standard deviation (1.0) * sqrt(2) + result *= /*sd * */ ROOT_TWO; + // result += normal disttribution mean (0) + return result; + } + + Estimate<double> + bootstrap( double confidence_level, + double* first, + double* last, + sample const& resample, + double ( *estimator )( double const*, double const* ) ) { + auto n_samples = last - first; + + double point = estimator( first, last ); + // Degenerate case with a single sample + if ( n_samples == 1 ) + return { point, point, point, confidence_level }; + + sample jack = jackknife( estimator, first, last ); + double jack_mean = + mean( jack.data(), jack.data() + jack.size() ); + double sum_squares = 0, sum_cubes = 0; + for ( double x : jack ) { + auto difference = jack_mean - x; + auto square = difference * difference; + auto cube = square * difference; + sum_squares += square; + sum_cubes += cube; + } + + double accel = sum_cubes / ( 6 * std::pow( sum_squares, 1.5 ) ); + long n = static_cast<long>( resample.size() ); + double prob_n = static_cast<double>( + std::count_if( resample.begin(), + resample.end(), + [point]( double x ) { return x < point; } )) / + static_cast<double>( n ); + // degenerate case with uniform samples + if ( Catch::Detail::directCompare( prob_n, 0. ) ) { + return { point, point, point, confidence_level }; + } + + double bias = normal_quantile( prob_n ); + double z1 = normal_quantile( ( 1. - confidence_level ) / 2. ); + + auto cumn = [n]( double x ) -> long { + return std::lround( normal_cdf( x ) * + static_cast<double>( n ) ); + }; + auto a = [bias, accel]( double b ) { + return bias + b / ( 1. - accel * b ); + }; + double b1 = bias + z1; + double b2 = bias - z1; + double a1 = a( b1 ); + double a2 = a( b2 ); + auto lo = static_cast<size_t>( (std::max)( cumn( a1 ), 0l ) ); + auto hi = + static_cast<size_t>( (std::min)( cumn( a2 ), n - 1 ) ); + + return { point, resample[lo], resample[hi], confidence_level }; + } + + bootstrap_analysis analyse_samples(double confidence_level, + unsigned int n_resamples, + double* first, + double* last) { + auto mean = &Detail::mean; + auto stddev = &standard_deviation; + +#if defined(CATCH_CONFIG_USE_ASYNC) + auto Estimate = [=](double(*f)(double const*, double const*)) { + std::random_device rd; + auto seed = rd(); + return std::async(std::launch::async, [=] { + SimplePcg32 rng( seed ); + auto resampled = resample(rng, n_resamples, first, last, f); + return bootstrap(confidence_level, first, last, resampled, f); + }); + }; + + auto mean_future = Estimate(mean); + auto stddev_future = Estimate(stddev); + + auto mean_estimate = mean_future.get(); + auto stddev_estimate = stddev_future.get(); +#else + auto Estimate = [=](double(*f)(double const* , double const*)) { + std::random_device rd; + auto seed = rd(); + SimplePcg32 rng( seed ); + auto resampled = resample(rng, n_resamples, first, last, f); + return bootstrap(confidence_level, first, last, resampled, f); + }; + + auto mean_estimate = Estimate(mean); + auto stddev_estimate = Estimate(stddev); +#endif // CATCH_USE_ASYNC + + auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++ + double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n); + + return { mean_estimate, stddev_estimate, outlier_variance }; + } + } // namespace Detail + } // namespace Benchmark +} // namespace Catch |
