diff options
| author | Lexi Winter <lexi@le-fay.org> | 2025-06-29 19:25:29 +0100 |
|---|---|---|
| committer | Lexi Winter <lexi@le-fay.org> | 2025-06-29 19:25:29 +0100 |
| commit | bc524d70253a4ab2fe40c3ca3e5666e267c0a4d1 (patch) | |
| tree | 1e629e7b46b1d9972a973bc93fd100bcebd395be /src/catch2/internal/catch_uniform_floating_point_distribution.hpp | |
| download | nihil-vendor/catch2/3.8.1.tar.gz nihil-vendor/catch2/3.8.1.tar.bz2 | |
import catch2 3.8.1vendor/catch2/3.8.1vendor/catch2
Diffstat (limited to 'src/catch2/internal/catch_uniform_floating_point_distribution.hpp')
| -rw-r--r-- | src/catch2/internal/catch_uniform_floating_point_distribution.hpp | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/src/catch2/internal/catch_uniform_floating_point_distribution.hpp b/src/catch2/internal/catch_uniform_floating_point_distribution.hpp new file mode 100644 index 0000000..23d03b4 --- /dev/null +++ b/src/catch2/internal/catch_uniform_floating_point_distribution.hpp @@ -0,0 +1,131 @@ + +// Copyright Catch2 Authors +// Distributed under the Boost Software License, Version 1.0. +// (See accompanying file LICENSE.txt or copy at +// https://www.boost.org/LICENSE_1_0.txt) + +// SPDX-License-Identifier: BSL-1.0 + +#ifndef CATCH_UNIFORM_FLOATING_POINT_DISTRIBUTION_HPP_INCLUDED +#define CATCH_UNIFORM_FLOATING_POINT_DISTRIBUTION_HPP_INCLUDED + +#include <catch2/internal/catch_random_floating_point_helpers.hpp> +#include <catch2/internal/catch_uniform_integer_distribution.hpp> + +#include <cmath> +#include <type_traits> + +namespace Catch { + + namespace Detail { +#if defined( __GNUC__ ) || defined( __clang__ ) +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wfloat-equal" +#endif + // The issue with overflow only happens with maximal ULP and HUGE + // distance, e.g. when generating numbers in [-inf, inf] for given + // type. So we only check for the largest possible ULP in the + // type, and return something that does not overflow to inf in 1 mult. + constexpr std::uint64_t calculate_max_steps_in_one_go(double gamma) { + if ( gamma == 1.99584030953472e+292 ) { return 9007199254740991; } + return static_cast<std::uint64_t>( -1 ); + } + constexpr std::uint32_t calculate_max_steps_in_one_go(float gamma) { + if ( gamma == 2.028241e+31f ) { return 16777215; } + return static_cast<std::uint32_t>( -1 ); + } +#if defined( __GNUC__ ) || defined( __clang__ ) +# pragma GCC diagnostic pop +#endif + } + +/** + * Implementation of uniform distribution on floating point numbers. + * + * Note that we support only `float` and `double` types, because these + * usually mean the same thing across different platform. `long double` + * varies wildly by platform and thus we cannot provide reproducible + * implementation. Also note that we don't implement all parts of + * distribution per standard: this distribution is not serializable, nor + * can the range be arbitrarily reset. + * + * The implementation also uses different approach than the one taken by + * `std::uniform_real_distribution`, where instead of generating a number + * between [0, 1) and then multiplying the range bounds with it, we first + * split the [a, b] range into a set of equidistributed floating point + * numbers, and then use uniform int distribution to pick which one to + * return. + * + * This has the advantage of guaranteeing uniformity (the multiplication + * method loses uniformity due to rounding when multiplying floats), except + * for small non-uniformity at one side of the interval, where we have + * to deal with the fact that not every interval is splittable into + * equidistributed floats. + * + * Based on "Drawing random floating-point numbers from an interval" by + * Frederic Goualard. + */ +template <typename FloatType> +class uniform_floating_point_distribution { + static_assert(std::is_floating_point<FloatType>::value, "..."); + static_assert(!std::is_same<FloatType, long double>::value, + "We do not support long double due to inconsistent behaviour between platforms"); + + using WidthType = Detail::DistanceType<FloatType>; + + FloatType m_a, m_b; + FloatType m_ulp_magnitude; + WidthType m_floats_in_range; + uniform_integer_distribution<WidthType> m_int_dist; + + // In specific cases, we can overflow into `inf` when computing the + // `steps * g` offset. To avoid this, we don't offset by more than this + // in one multiply + addition. + WidthType m_max_steps_in_one_go; + // We don't want to do the magnitude check every call to `operator()` + bool m_a_has_leq_magnitude; + +public: + using result_type = FloatType; + + uniform_floating_point_distribution( FloatType a, FloatType b ): + m_a( a ), + m_b( b ), + m_ulp_magnitude( Detail::gamma( m_a, m_b ) ), + m_floats_in_range( Detail::count_equidistant_floats( m_a, m_b, m_ulp_magnitude ) ), + m_int_dist(0, m_floats_in_range), + m_max_steps_in_one_go( Detail::calculate_max_steps_in_one_go(m_ulp_magnitude)), + m_a_has_leq_magnitude(std::fabs(m_a) <= std::fabs(m_b)) + { + assert( a <= b ); + } + + template <typename Generator> + result_type operator()( Generator& g ) { + WidthType steps = m_int_dist( g ); + if ( m_a_has_leq_magnitude ) { + if ( steps == m_floats_in_range ) { return m_a; } + auto b = m_b; + while (steps > m_max_steps_in_one_go) { + b -= m_max_steps_in_one_go * m_ulp_magnitude; + steps -= m_max_steps_in_one_go; + } + return b - steps * m_ulp_magnitude; + } else { + if ( steps == m_floats_in_range ) { return m_b; } + auto a = m_a; + while (steps > m_max_steps_in_one_go) { + a += m_max_steps_in_one_go * m_ulp_magnitude; + steps -= m_max_steps_in_one_go; + } + return a + steps * m_ulp_magnitude; + } + } + + result_type a() const { return m_a; } + result_type b() const { return m_b; } +}; + +} // end namespace Catch + +#endif // CATCH_UNIFORM_FLOATING_POINT_DISTRIBUTION_HPP_INCLUDED |
