aboutsummaryrefslogtreecommitdiffstats
path: root/misc/py-sagemaker-train
diff options
context:
space:
mode:
Diffstat (limited to 'misc/py-sagemaker-train')
-rw-r--r--misc/py-sagemaker-train/Makefile30
-rw-r--r--misc/py-sagemaker-train/distinfo3
-rw-r--r--misc/py-sagemaker-train/files/patch-pyproject.toml16
-rw-r--r--misc/py-sagemaker-train/pkg-descr11
4 files changed, 60 insertions, 0 deletions
diff --git a/misc/py-sagemaker-train/Makefile b/misc/py-sagemaker-train/Makefile
new file mode 100644
index 000000000000..f457f72a9c19
--- /dev/null
+++ b/misc/py-sagemaker-train/Makefile
@@ -0,0 +1,30 @@
+PORTNAME= sagemaker-train
+DISTVERSION= 1.0
+CATEGORIES= misc python # machine-learning
+MASTER_SITES= PYPI
+PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
+DISTNAME= ${PORTNAME:S/-/_/}-${PORTVERSION}
+
+MAINTAINER= yuri@FreeBSD.org
+COMMENT= SageMaker: Library for training & deploying models on Amazon SageMaker
+WWW= https://sagemaker.readthedocs.io/en/stable/ \
+ https://github.com/aws/sagemaker-python-sdk
+
+LICENSE= APACHE20
+LICENSE_FILE= ${WRKSRC}/LICENSE
+
+BUILD_DEPENDS= ${PY_SETUPTOOLS} \
+ ${PYTHON_PKGNAMEPREFIX}wheel>0:devel/py-wheel@${PY_FLAVOR}
+RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}graphene>=3:devel/py-graphene@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}paramiko>=2.11.0:security/py-paramiko@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}sagemaker-core>=2.0.0:misc/py-sagemaker-core@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}tblib>=1.7.0:devel/py-tblib@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}typing-extensions>=4.9.0:devel/py-typing-extensions@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}pyyaml>=6.0:devel/py-pyyaml@${PY_FLAVOR}
+
+USES= python
+USE_PYTHON= pep517 autoplist
+
+NO_ARCH= yes
+
+.include <bsd.port.mk>
diff --git a/misc/py-sagemaker-train/distinfo b/misc/py-sagemaker-train/distinfo
new file mode 100644
index 000000000000..4e4a1c12ad89
--- /dev/null
+++ b/misc/py-sagemaker-train/distinfo
@@ -0,0 +1,3 @@
+TIMESTAMP = 1764170921
+SHA256 (sagemaker_train-1.0.tar.gz) = 0f216cde9a8757790c15e34c7199bcc81fdf03ea133c95d5f3388e45661226b5
+SIZE (sagemaker_train-1.0.tar.gz) = 92616
diff --git a/misc/py-sagemaker-train/files/patch-pyproject.toml b/misc/py-sagemaker-train/files/patch-pyproject.toml
new file mode 100644
index 000000000000..c26ea4aad737
--- /dev/null
+++ b/misc/py-sagemaker-train/files/patch-pyproject.toml
@@ -0,0 +1,16 @@
+--- pyproject.toml.orig 2025-11-26 15:41:24 UTC
++++ pyproject.toml
+@@ -1,5 +1,5 @@
+ [build-system]
+-requires = ["setuptools>=64", "wheel"]
++requires = ["setuptools", "wheel"]
+ build-backend = "setuptools.build_meta"
+
+ [project]
+@@ -73,4 +73,4 @@ line-length = 100
+ line-length = 100
+
+ [tool.setuptools]
+-include-package-data = true
+\ No newline at end of file
++include-package-data = true
diff --git a/misc/py-sagemaker-train/pkg-descr b/misc/py-sagemaker-train/pkg-descr
new file mode 100644
index 000000000000..16dad05472d1
--- /dev/null
+++ b/misc/py-sagemaker-train/pkg-descr
@@ -0,0 +1,11 @@
+sagemaker-train is a part of the SageMaker Python SDK.
+
+SageMaker Python SDK is an open source library for training and deploying
+machine learning models on Amazon SageMaker.
+
+With the SDK, you can train and deploy models using popular deep learning
+frameworks Apache MXNet and TensorFlow. You can also train and deploy
+models with Amazon algorithms, which are scalable implementations of core
+machine learning algorithms that are optimized for SageMaker and GPU training.
+If you have your own algorithms built into SageMaker compatible Docker
+containers, you can train and host models using these as well.