aboutsummaryrefslogtreecommitdiffstats
path: root/misc/py-sagemaker-core
diff options
context:
space:
mode:
Diffstat (limited to 'misc/py-sagemaker-core')
-rw-r--r--misc/py-sagemaker-core/Makefile30
-rw-r--r--misc/py-sagemaker-core/distinfo6
-rw-r--r--misc/py-sagemaker-core/pkg-descr18
3 files changed, 36 insertions, 18 deletions
diff --git a/misc/py-sagemaker-core/Makefile b/misc/py-sagemaker-core/Makefile
index e6c02a325f36..bd9968f5909e 100644
--- a/misc/py-sagemaker-core/Makefile
+++ b/misc/py-sagemaker-core/Makefile
@@ -1,26 +1,40 @@
PORTNAME= sagemaker-core
-DISTVERSION= 1.0.54
+DISTVERSION= 2.0.1
CATEGORIES= misc python # machine-learning
MASTER_SITES= PYPI
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
DISTNAME= ${PORTNAME:S/-/_/}-${PORTVERSION}
MAINTAINER= yuri@FreeBSD.org
-COMMENT= Sagemaker core functionalities
-WWW= https://github.com/aws/sagemaker-core
+COMMENT= SageMaker: Core functionalities
+WWW= https://github.com/aws/sagemaker-python-sdk \
+ https://github.com/aws/sagemaker-core
LICENSE= APACHE20
LICENSE_FILE= ${WRKSRC}/LICENSE
BUILD_DEPENDS= ${PY_SETUPTOOLS} \
${PYTHON_PKGNAMEPREFIX}wheel>0:devel/py-wheel@${PY_FLAVOR}
-RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}boto3>=1.35.36:www/py-boto3@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}importlib-metadata>0:devel/py-importlib-metadata@${PY_FLAVOR} \
+RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}attrs>=20.3.0:devel/py-attrs@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}boto3>=1.35.75<2.0.0:www/py-boto3@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}importlib-metadata>=7.0>=1.4.0:devel/py-importlib-metadata@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}jsonschema>0:devel/py-jsonschema@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}platformdirs>=4.0.0:devel/py-platformdirs@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}pydantic2>=2.0.0:devel/py-pydantic2@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}mock>0:devel/py-mock@${PY_FLAVOR} \
+ ${PYNUMPY} \
+ ${PYTHON_PKGNAMEPREFIX}omegaconf>=2.1.0:devel/py-omegaconf@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}packaging>=20.0:devel/py-packaging@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}pandas>=1.0.0:math/py-pandas@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}platformdirs>=4.0.0<5.0.0:devel/py-platformdirs@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}protobuf>0:devel/py-protobuf@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}pydantic2>=2.0.0<3.0.0:devel/py-pydantic2@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}pytorch>=1.9.0:misc/py-pytorch@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}pytz>=2021.1:devel/py-pytz@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}pyyaml>=6.0:devel/py-pyyaml@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}requests>=2.20.0<3.0.0:www/py-requests@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}rich>=13.0.0:textproc/py-rich@${PY_FLAVOR} \
- ${PYTHON_PKGNAMEPREFIX}pyyaml>=6.0:devel/py-pyyaml@${PY_FLAVOR}
+ ${PYTHON_PKGNAMEPREFIX}schema>=0.7.5:devel/py-schema@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}smdebug-rulesconfig>=1.0.1:misc/py-smdebug-rulesconfig@${PY_FLAVOR} \
+ ${PYTHON_PKGNAMEPREFIX}typing-extensions>=4.9.0:devel/py-typing-extensions@${PY_FLAVOR}
USES= python
USE_PYTHON= pep517 autoplist
diff --git a/misc/py-sagemaker-core/distinfo b/misc/py-sagemaker-core/distinfo
index 756437765622..3f2410a75a38 100644
--- a/misc/py-sagemaker-core/distinfo
+++ b/misc/py-sagemaker-core/distinfo
@@ -1,3 +1,3 @@
-TIMESTAMP = 1755879212
-SHA256 (sagemaker_core-1.0.54.tar.gz) = c3706174c346f22f85db9fd0ab8bb54a4112c089faeb055a68a2677e30ce9b3b
-SIZE (sagemaker_core-1.0.54.tar.gz) = 411314
+TIMESTAMP = 1763925117
+SHA256 (sagemaker_core-2.0.1.tar.gz) = dc2e0e56c17bd742fd6121f9c1bc87e232d4d0f63577389e9caa5066cae3e087
+SIZE (sagemaker_core-2.0.1.tar.gz) = 1002160
diff --git a/misc/py-sagemaker-core/pkg-descr b/misc/py-sagemaker-core/pkg-descr
index 3ecd7c4fbe95..dfd4e8a947b2 100644
--- a/misc/py-sagemaker-core/pkg-descr
+++ b/misc/py-sagemaker-core/pkg-descr
@@ -1,7 +1,11 @@
-sagemaker-core is a Python SDK designed to provide an object-oriented interface
-for interacting with Amazon SageMaker resources. It offers full parity with
-SageMaker APIs, allowing developers to leverage all SageMaker capabilities
-directly through the SDK. sagemaker-core introduces features such as dedicated
-resource classes, resource chaining, auto code completion, comprehensive
-documentation and type hints to enhance the developer experience as well as
-productivity.
+sagemaker-core is a part of the SageMaker Python SDK.
+
+SageMaker Python SDK is an open source library for training and deploying
+machine learning models on Amazon SageMaker.
+
+With the SDK, you can train and deploy models using popular deep learning
+frameworks Apache MXNet and TensorFlow. You can also train and deploy
+models with Amazon algorithms, which are scalable implementations of core
+machine learning algorithms that are optimized for SageMaker and GPU training.
+If you have your own algorithms built into SageMaker compatible Docker
+containers, you can train and host models using these as well.